Modeling genome evolution with a diffusion approximation of a birth-and-death process

نویسندگان

  • Georgy P. Karev
  • Faina S. Berezovskaya
  • Eugene V. Koonin
چکیده

MOTIVATION In our previous studies, we developed discrete-space birth, death and innovation models (BDIMs) of genome evolution. These models explain the origin of the characteristic Pareto distribution of paralogous gene family sizes in genomes, and model parameters that provide for the evolution of these distributions within a realistic time frame have been identified. However, extracting the temporal dynamics of genome evolution from discrete-space BDIM was not technically feasible. We were interested in obtaining dynamic portraits of the genome evolution process by developing a diffusion approximation of BDIM. RESULTS The diffusion version of BDIM belongs to a class of continuous-state models whose dynamics is described by the Fokker-Plank equation and the stationary solution could be any specified Pareto function. The diffusion models have time-dependent solutions of a special kind, namely, generalized self-similar solutions, which describe the transition from one stationary distribution of the system to another; this provides for the possibility of examining the temporal dynamics of genome evolution. Analysis of the generalized self-similar solutions of the diffusion BDIM reveals a biphasic curve of genome growth in which the initial, relatively short, self-accelerating phase is followed by a prolonged phase of slow deceleration. This evolutionary dynamics was observed both when genome growth started from zero and proceeded via innovation (a potential model of primordial evolution), and when evolution proceeded from one stationary state to another. In biological terms, this regime of evolution can be tentatively interpreted as a punctuated-equilibrium-like phenomenon whereby evolutionary transitions are accompanied by rapid gene amplification and innovation, followed by slow relaxation to a new stationary state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth–death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman–Kolmogorov differential equations are developed with the use of mnemonic rule and these equation...

متن کامل

Birth(death)/birth-death processes and their computable transition probabilities with statistical applications

Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computation...

متن کامل

Diffusion Process for Multi - Repairmen Machining System with Spares Aand Balking

In this paper we describe G/G/R+s multi- repairmen machining system with balking. The system consists of M operating machines, S spare machines, R permanent and s additional repairmen. Assuming the discrete flow of machines by continuous one, the diffusion approximation technique for the machine repair system has developed. The system will be in normal working mode if there is M operating machi...

متن کامل

A Useful Family of Stochastic Processes for Modeling Shape Diffusions

 One of the new area of research emerging in the field of statistics is the shape analysis. Shape is defined as all the geometrical information of an object whose location, scale and orientation is not of interest. Diffusion in shape analysis can be studied via either perturbation of the key coordinates identifying the initial object or random evolution of the shape itself. Reviewing the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 Suppl 3  شماره 

صفحات  -

تاریخ انتشار 2005